Dinkelbach's algorithm as an efficient method to solve a class of MINLP models for large-scale cyclic scheduling problems
نویسندگان
چکیده
In this paper we consider the solution methods for mixed-integer linear fractional programming (MILFP) models, which arise in cyclic process scheduling problems. We first discuss convexity properties of MILFP problems, and then investigate the capability of solving MILFP problems with MINLP methods. Dinkelbach's algorithm is introduced as an efficient method for solving large scale MILFP problems for which its optimality and convergence properties are established. Extensive computational examples are presented to compare Dinkelbach's algorithm with various MINLP methods. To illustrate the applications of this algorithm, we consider industrial cyclic scheduling problems for a reaction-separation network and a tissue paper mill with byproduct recycling. These problems are formulated as MILFP models based on a continuous time Resource-Task Network (RTN). The results show that orders of magnitude reduction in CPU times can be achieved when using this algorithm compared to solving the problems with commercial MINLP solvers.
منابع مشابه
A Tabu Search Method for a New Bi-Objective Open Shop Scheduling Problem by a Fuzzy Multi-Objective Decision Making Approach (RESEARCH NOTE)
This paper proposes a novel, bi-objective mixed-integer mathematical programming for an open shop scheduling problem (OSSP) that minimizes the mean tardiness and the mean completion time. To obtain the efficient (Pareto-optimal) solutions, a fuzzy multi-objective decision making (fuzzy MODM) approach is applied. By the use of this approach, the related auxiliary single objective formulation can...
متن کاملA Trust Region Algorithm for Solving Nonlinear Equations (RESEARCH NOTE)
This paper presents a practical and efficient method to solve large-scale nonlinear equations. The global convergence of this new trust region algorithm is verified. The algorithm is then used to solve the nonlinear equations arising in an Expanded Lagrangian Function (ELF). Numerical results for the implementation of some large-scale problems indicate that the algorithm is efficient for these ...
متن کاملAn integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method
In this paper, teaching–learning-based optimization (TLBO) is proposed to solve flexible job shop scheduling problem (FJSP) based on the integrated approach with an objective to minimize makespan. An FJSP is an extension of basic job-shop scheduling problem. There are two sub problems in FJSP. They are routing problem and sequencing problem. If both the sub problems are solved simultaneously, t...
متن کاملA New Approach in Job Shop Scheduling: Overlapping Operation
In this paper, a new approach to overlapping operations in job shop scheduling is presented. In many job shops, a customer demand can be met in more than one way for each job, where demand determines the quantity of each finished job ordered by a customer. In each job, embedded operations can be performed due to overlapping considerations in which each operation may be overlapped with the other...
متن کاملCONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM
A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Chemical Engineering
دوره 33 شماره
صفحات -
تاریخ انتشار 2009